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Hypertrophic Differentiation in Articular Cartilage Disorders
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Hypertrophy is a key component of endochondral ossification, the process controlling skeletal (cartilage, bone)
development by differentiation of mesenchymal stem cells. Hypertrophic events also occur on cartilage injury such
as during osteoarthritis (OA) and to a certain extent in focal lesions that may lead to OA if let untreated. Strategies
based on the delivery on therapeutic genes and progenitor cells (the cells mostly recruited in spontaneous and guided
repair) offer potential tools to delay or even prevent such undesirable events in sites of cartilage damage. The goal of
this review is to revisit the mechanisms of hypertrophy during skeletal development and diseases and to provide an
overview of the most recent advances in gene and stem cell therapy in the field of cartilage repair.

Introduction

ARTICULAR CARTILAGE, the tissue that allows for a smooth
gliding and weight bearing of articulating surfaces, does
not have the ability for self-repair due to the absence of blood
vessels and lymphatic drainage that normally deliver regen-
erative progenitor cells to the sites of injury [1]. Lesions in the
cartilage [generalized osteoarthritis (OA), focal defects] thus
fail to properly regenerate their native, hyaline structure,
showing also signs of hypertrophy that mostly recapitulate the
processes of skeletal (cartilage, bone) development (endo-
chondral ossification) [2—-5]. None of the current options de-
veloped in the clinics to treat cartilage injuries has thus far
reliably addressed such issues, chiefly leading to the forma-
tion of a disorganized fibrocartilaginous tissue with lesser
mechanical properties, poor integration with the surrounding
tissue, and still signs of hypertrophic impacts [6,7]. Attractive
tools to improve the quality of such repair tissue may be
developed using gene therapy procedures combined with the
administration of progenitor cells that participate in cartilage
development and undergo differentiation during spontaneous
and guided repair [8,9]. Indeed, several lines of evidence
showed that such cells are amenable to genetic modification
using nonviral or viral vectors (adeno-, retro-/lentiviral, re-
combinant adeno-associated viral vectors) without impairment
of their potency for differentiation. Such gene transfer allowed
for an enhanced chondrogenesis and reduced hypertrophy in
a variety of experimental models on delivery of particular
candidate sequences. The goal of this study is to summarize
the role of hypertrophy in cartilage development, injury, and
repair and the current status of gene- and stem cell-based
treatments capable of modulating hypertrophic changes in
cartilage lesions.

Articular Cartilage and Hypertrophy
Structure and functions of the articular cartilage

The articular cartilage is the tissue that supports the
smooth gliding of articulating surfaces in diarthrodial joints
and allows to withstand local mechanical loading forces
by maintaining a balance between the production and deg-
radation of extracellular cartilage matrix (ECM) compo-
nents by the articular chondrocytes. The adult, hyaline
articular cartilage is an aneural tissue devoid of vasculari-
zation and lymphatic drainage that is separated from the
underlying subchondral bone by a thin calcified layer. This
particular tissue has a typical zonal organization, from the
superficial to the deep zone (Fig. 1A). The superficial zone
at the articular surface contains premature chondrocytes
and thin collagen fibrils aligned parallel both to each other
and to the surface area. In the middle zone, lower cell densities
are present, with a rounded and mature phenotype surrounded
by randomly arranged collagen fibrils with slightly larger di-
ameters. The deep zone contains proliferating chondrocytes in
columnar arrangement vertical to the articular surface, with
collagen fibrils showing maximal diameters. The underlying
calcified layer acts as a crossover to the subchondral bone and
is characterized by the presence of chondrocytes with a hy-
pertrophic phenotype. The chondrocytes (the only cell popu-
lation in the cartilage) are embedded in this dense ECM made
of proteoglycans bound to 70%—80% water and of collagen
fibrils (mostly type-II collagen but also of type-VI, -IX, -XI,
and -XIV collagen) associated with noncollagenous proteins,
including the cartilage oligomeric matrix protein (COMP),
link protein, fibromodulin, fibronectin, decorin, and tenascin
[10-13]. A narrow (pericellular) matrix (PCM) rich in pro-
teoglycans and collagens (type-II but especially type-VI
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collagen) surrounds the chondrocytes, mediating interactions
with membrane receptors at the surface of the cells that also
serve as sensors of biochemical and mechanical stimuli (in-
tegrins, CD44, syndecan-4, discoidin domain receptor 2
[DDR?2]) to adapt the cartilage homeostasis to physiological or
altered environmental conditions [14,15].
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Skeletal development and hypertrophy

The increasing knowledge on the processes controlling
skeletal development (endochondral ossification) has allowed
for a better understanding of the steps and pathways impli-
cated in cartilage formation while providing key insights into
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FIG. 2. Endochondral ossification during embryonic development. Condensed MSCs undergo differentiation as chon-
droprogenitors with subsequent cell proliferation. Mature chondrocytes next develop by chondrogenic differentiation with
increases in cell volume, leading to hypertrophic chondrocytes that ultimately undergo apoptosis and subsequent replacement
by osteoblasts (including by differentiation of hypertrophic chondrocytes). These complex processes involve several par-
ticipating factors (blue boxes) and matrix molecules (yellow boxes). BMP, bone morphogenetic protein; FGF, fibroblast growth
factor; FGFR, FGF receptor; IGF, insulin-like growth factor; IHH, Indian hedgehog; MSCs, mesenchymal stem cells; N-Cad,
N-cadherin; PTHrP, parathyroid hormone-related protein; Runx2, runt-related transcription factor 2; SOX9, sex-determining
region Y-type high-mobility group box 9; TGF-f, transforming growth factor beta; VEGF, vascular endothelial growth factor;
Wnht, Drosophila segment polarity gene wingless and vertebrate homolog integrated int-1 (c, canonical; nc, noncanonical).
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the mechanisms of cartilage repair [3-5,16]. Endochondral
ossification is based on the complex model of the limb bud
development involving mesenchymal stem cells (MSCs)
and is divided in steps of MSC condensation, differentiation
from chondroprogenitors to mature chondrocytes, terminal
differentiation to hypertrophy, and ultimately, bone forma-
tion [2,17-23]. The growth plate is a tripartite organization
consisting of resting chondrocytes (zone 1) that undergo
maturation and rapid proliferation, resulting in columns of
rapidly dividing cells (zone 2), and then increase their
volume, terminally differentiate, and exit the cell cycle,
representing prehypertrophic and hypertrophic cells (zone
3) (Fig. 1B).

Cell condensation. MSCs first undergo cell proliferation
and clustering (Fig. 2), resulting in an increase in cell vol-
ume, based on cell-matrix and cell—cell interactions via cell
adhesion molecules, including N-cadherin (Ca®* dependent)
and neural cell adhesion molecule (N-CAM). At this stage,
the cells produce ECM molecules such as fibronectin and
type-I collagen. MSC condensation is initiated by the trans-
forming growth factor beta (TGF-p).

Chondrocyte differentiation, maturation, and proliferation. MSCs
next undergo important changes in their patterns of ECM
production (hyaluronan production, shift from type-I colla-
gen to aggrecan, type-Il, type-IX, and type-XI collagen)
while proliferating and adopting the rounded shape char-
acterisic of differentiated chondrocytes (Fig. 2). These
processes are mostly controlled by TGF-f and transcription
factors of the cartilage-specific sex-determining region Y-
type high-mobility group box family (SOX9, SOXS5, SOX6-
SOX trio) and also probably by other transcription factors
such as Nk3 homeobox 2 (Nkx3.2). Beyond this stage, cells
either form the hyaline cartilage or undergo further steps
of differentiation that may lead to matrix calcification and
ossification.

Hypertrophy and mineralization. Cells may next undergo
hypertrophy, with conversion from prehypertrophic to hyper-
trophic cells by terminal differentiation and size increase (up to
20-fold), with replacement of type-II by type-X collagen on
expression of matrix metalloproteinase 13 (MMP13), expression
of alkaline phosphatase (ALP), and calcium-dependent hy-
droxyapatite deposition (mineralization) (Fig. 2). These pro-
cesses are mostly regulated by the parathyroid hormone-related
protein (PTHrP)/Indian hedgehog (IHH) pathway and by the
bone-specific runt-related transcription factor 2 (Runx2), and
also probably by other transcription factors, including members
of the myosin enhancer factor 2 family (MEF2C), forkhead box
A 2/3 (FOXA2/3), and CCAAT/enhancer-binding protein beta
(C/EBPbeta). This stage is a prerequisite to matrix calcification
and ossification.

Matrix calcification and ossification. The final steps of en-
dochondral ossification consist of (1) further ECM remodeling
[expression of type-I collagen, osteocalcin (OCN), osteopontin
(OP)], (2) apoptosis of hypertrophic chondrocytes, (3) invasion
of hypertrophic zones by newly synthesized blood vessels on
expression of the angiogenic vascular endothelial growth factor
(VEGF), and (4) replacement with osteoblasts, including by
differentiation of hypertrophic chondrocytes with further ex-
pression of MMPs (Fig. 2). These processes are mostly deter-
mined by the Wnt (Drosophila segment polarity gene wingless
and vertebrate homolog integrated int-1)/B-catenin pathway
and Runx2.
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Articular cartilage injuries and hypertrophy

Injuries of the articular cartilage are defined as disruptions
of its structural and functional integrity and can appear ei-
ther as a generalized disease such as in OA or as localized
(focal) defects [1,24-26].

OA is a progressive, multifactorial joint disease character-
ized by the gradual degradation of the articular cartilage sur-
face and also associated with pathological changes in all other
joint tissues (subchondral bone, synovial membrane, meniscus,
tendons and ligaments, muscles). OA is thus also associated
with sclerosis and osteophyte formation and hypertrophy, by
activation of inflammatory, biomechanical, and catabolic
cascades and with crosstalks between tissues, showing also a
genetic background [27-32]. OA cartilage shares hypertrophic
features similar to those involved in the process of endochon-
dral ossification (chondrocyte proliferation and differentiation
with loss of SOX9, type-II collagen, and aggrecan expression,
ECM remodeling and mineralization with increased expres-
sion of type-X collagen, MMP13, and Runx2, chondrocyte
apoptosis, invasion of blood vessels, and replacement with
osteoblasts). This may be seen as a switch from the articular
to a growth plate chondrocyte phenotype except for hyper-
trophic cell size increase [3,5,33-38].

Focal lesions instead, such as resulting from trauma, are
generally restrained to defined areas, involving the cartilage
alone (chondral defects) or reaching through the subchondral
bone (osteochondral defects), leading to OA if left untreated.
While hypertrophic features similar to those occurring during
endochondral ossification or as observed in OA have not been
clearly defined in such defects, several lines of evidence indi-
cate hypertrophic-like changes in traumatic defects. They in-
clude the advancement of the subchondral bone plate within the
cartilage surface and the formation of intralesional osteophytes
and subchondral bone cysts with possible type-X collagen de-
position [6,7,39—43], even on cartilage repair procedures [6,44].

Control Mechanisms of Hypertrophy

Hypertrophy is a complex process that is regulated at dif-
ferent levels by various signaling pathways, with an influence
of the microenvironment and of epigenetic factors (Fig. 3).

Signaling pathways

Various pathways have been identified for their involve-
ment in the process of hypertrophy, including signaling from
PTHrP/IHH, Wnt, TGF-/bone morphogenetic protein (BMP),
fibroblast growth factor (FGF), and insulin-like growth factor I
(IGF-I) (Table 1).

PTHrP/Indian hedgehog. PTHrP and THH are key factors
controlling the balance between chondrocyte differentiation
and hypertrophy. PTHrP is a critical antihypertrophic factor
acting via its receptor (PTH/PTHrP receptor expressed in
prehypertrophic and hypertrophic chondrocytes) to counter-
act the effects of prohypertrophic IHH by a negative feedback
loop [45—47]. The chondrocytes stay in a mature state as long
as PTHrP expression is higher than that of IHH, but they
undergo hypertrophy when THH expression increases, that
is, when chondrocytes become fully hypertrophic. PTHrP
signaling acts via the PTHI receptor (PTHIR) and protein
kinases A and C (PKA, PKC) and mitogen-activated protein
kinase p38 (p38 MAPK) that reduce the phosphorylation of
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FIG. 3. Control mechanisms of hypertrophy. Hypertrophy is regulated by signaling pathways, the microenvironment, and
by epigenetic factors. Hypertrophy regulators are represented outside of the cell, uptake mechanisms at the cell membrane,
and downstream signaling in frames inside of the cell, including the effects on target transcription factors in the nucleus.
Factors that stimulate hypertrophy are illustrated in green, inhibiting factors in red. CaMKII, calcium/calmodulin-dependent
protein kinase; CaR, calcium-sensing receptor; Gli, glioblastoma-isolated protein; HDAC, histone deacetylase; HIF,
hypoxia-inducible transcription factor; IGF-IR, IGF-I receptor; MAPK, mitogen-activated protein kinase; MEF2C, myosin
enhancer factor 2 family; miR, microRNA; MMP, matrix metalloproteinase; PI3K, phosphatidylinositol-bisphosphate 3-
kinase; PKA/PKC, protein kinase A/C; Ptch, patched receptor; PTHIR, PTHrP receptor; Raf-MEK1/2-ERK1/2, Raf-
mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated kinase 1/2; Smad, Sma- and Mad-related protein;
TGFBR, TGF-p receptor.

TABLE 1. PARTICIPANTS IN HYPERTROPHY REGULATION

Participants Inducers Inhibitors

Signaling pathways

PTHrP/THH IHH PTHrP
Wnt Canonical Wnt/B-catenin noncanonical Wnts/Ca** Noncanonical Wnts/PI3K
TGF-B/BMP/GDF-5 Smad1/5/8 Smad?2/3
FGF FGF-2 FGF-18
IGF IGF-1
Microenvironment
Cytokines/chemokines IL-1, TNF, ROS RAGE Ileptin chemokine-ligands
ECM ECM receptors (integrins, DDRs) ECM fragments
Mechanical stimulation Cyclic mechanical stress weight Fluid shear forces
Calcium Ion channels CaR
Oxygen tension HIF-2a. HIF-1a
Epigenetic factors
HDACs HDAC3 HDAC4, 5,7
microRNAs miR-1, miR-365 miR-140
DNA methylation CpG methylation (silencing)

Transcription factors
Runx2, MEF2C, Gli, NF-xB, ERG HIF-2a SOX9, Nkx3.2 HIF-1a

BMP, bone morphogenetic protein; CaR, calcium-sensing receptor; DDR, discoidin domain receptor; ECM, extracellular cartilage
matrix; ERG, ETS-related transcription factor; ETS, erythroblast transformation-specific transcription factor; FGF, fibroblast growth factor;
GDF-5, growth differentiation factor 5; Gli, glioblastoma-isolated protein; HDAC, histone deacetylase; HIF, hypoxia-inducible
transcription factor; IGF, insulin-like growth factor; IHH, Indian hedgehog; IL-1, interleukin 1; MEF2C, myosin enhancer factor 2 family;
miR, microRNA; NF-kB, nuclear factor kappa-light chain enhancer of activated B cells; Nkx3.2, Nk3 homeobox 2; PI3K,
phosphatidylinositol-bisphosphate 3-kinase; PTHrP, parathyroid hormone-related protein; RAGE, receptor for advanced glycation end
products; ROS, reactive oxygen species; Runx2, runt-related transcription factor 2; Smad, Sma- and Mad-related protein; SOX9, sex-
determining region Y-type high-mobility group box 9; TGF-f, transforming growth factor beta; TNF; tumor necrosis factor; Want,
Drosophila segment polarity gene wingless and vertebrate homolog integrated int-1.
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MEF2C [48-50]. PTHrP signaling also blocks hypertrophy
by stimulating the expression of Nkx3.2 [51] and preventing
Runx2 expression [52]. IHH signaling acts via the Patched 1
receptor (Ptch1) that inhibits the Smoothened (Smo) receptor,
leading to the activation of transcription factors of the GLI-
Kriippel family [glioblastoma-isolated protein (Gli) to induce
Runx?2 expression] [53].

Wnt. The canonical Wnt/B-catenin prohypertrophic path-
way acts by intracellular transport of canonical Wnts (Wnt4,
Wnt8, Wnt9) via the Frizzled receptor, preventing proteoso-
mal degradation of B-catenin that subsequently translocates
in the nucleus to induce Runx2 expression [54]. Non-
canonical Wnts (Wnt5a, Wntl1) have dual functions, being
prohypertrophic early on by induction of calcium release by
G-protein-coupled receptors (GPCR; Wnt/Ca** pathway) and
antihypertrophic later on by inhibiting Runx2 expression
through activation of phosphatidylinositol-bisphosphate 3-
kinase (PI3K) and of the nuclear factor kappa-light chain
enhancer of activated B cells (NF-xB) [55].

TGF-B/bone morphogenetic protein. Even though TGF-f is
a critical inducer of chondrogenesis, it can display prohy-
pertrophic effects on interaction with receptors (TGFBRI,
TGFpRII). Subsequent signaling via specific members of the
Sma- and Mad-related family (Smadl1/5/8) regulate Runx2
expression [56] possibly by epigenetic changes, while sig-
naling via Smad2/3 instead has antihypertrophic effects by
SOXO stabilization and Runx?2 inhibition by epigenetic reg-
ulation [57]. A tight balance between Smad2/3 and Smad1/5/
8 is thus critical to the processes of chondrocyte differentia-
tion and hypertrophy, and a shift from Smad2/3 to Smad1/5/8
signaling has been reported to lead to hypertrophic phenotype
in OA [58]. BMPs (BMP-2, -4, -5, -6, -7, -9) belong to the
TGF-p superfamily of factors that act through Smad1/5/8 and
growth arrest and DNA damage-inducible protein 45beta
(GADDA45beta) signaling on binding to the receptors [BMP
receptor type I (BMPR-I), BMPR-II], leading to Runx2 ex-
pression [59]. The growth differentiation factor 5 (GDF-5),
another member of the BMP family of factors, also displays
hypertrophic activities by activation of the ETS (erythroblast
transformation-specific transcription factor)-related tran-
scription factor (ERG) [60,61].

Fibroblast growth factor. Signaling via members of the fi-
broblast growth factor (FGF) family and their receptors (FGFR)
is another important component of the control of hypertrophy
[62]. FGF-2 interacts with FGFR1, activating Raf-mitogen-
activated protein kinase kinase 1/2 (MEKI1/2)-extracellular
signal-regulated kinase 1/2 (ERK1/2) signaling that positively
regulates Runx2 expression [63,64]. FGF18 acts via FGFR3
and MAPK signaling to downregulate proliferation and matu-
ration, with inhibition of IHH expression [65,66] and with
FGFR1 to regulate vascular invasion by inducing the expression
of VEGF [67].

Insulin-like growth factor. The IGF-1 acting via its re-
ceptor (IGF-IR) also enhances hypertrophy via the PI3K/
serine/threonine kinase Akt (also known as protein kinase
B) pathway, inducing the expression of type-X collagen,
ALP, and Runx2 [68-70].

Microenvironment

The microenvironment is also a critical source of factors
that regulate hypertrophy (Table 1).
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Soluble mediators. A number of cytokines and chemo-
kines are capable of inducing hypertrophy. They include
interleukin 1 (IL-1), tumor necrosis factor (TNF), receptor
for advanced glycation end products (RAGE), reactive ox-
ygen species, leptin, chemokine-ligands (CXCL1, CXCLS,
ie, IL-8), possibly acting via p38 MAPK to enhance the
expression of type-X collagen, ALP, and MMP13 [71-76].

ECM-related compounds. Cell-matrix and cell-cell in-
teractions are particularly important during skeletal de-
velopment and maturation. Various ECM receptors play
key roles in cell arrangement and signaling during carti-
lage formation. They include the integrins (major colla-
gen receptors that act via integrin-linked kinase and the
Rho GTPase Racl1/CdC42 to promote hypertrophy) [77]
and the DDRs (tyrosine kinases activated by type-II and
type-X collagen that modulate the expression of MMP13)
[78,79]. ECM fragmentation products play also crucial
roles in hypertrophy such as type-II collagen breakdown
products that are capable of upregulating type-X collagen
expression [80].

Mechanical stimulation. Hypertrophic processes are also
regulated by biomechanical stimuli [8§1-83]. Cyclic mechani-
cal stress and weight loading activate the Wnt/B-catenin
pathway and enhance the expression of IHH, Runx2, MMP13,
type-X collagen, OP for ossification, and VEGF for vascular-
ization [84—89]. Fluid shear forces are also capable of acti-
vating the Wnt/B-catenin pathway, leading to an upregulation
of Runx2 expression [90-93]. Pathways of mechanotransduc-
tion regulating chondrogenesis and hypertrophy may include
TGF-B/Smad, IHH, and integrin signaling [94].

Oxygen tension. Adult articular cartilage has a natural hyp-
oxic (2%—8% O,) environment. Oxygen tension plays critical
roles in hypertrophy as hypoxia induces MSC chondrogenesis
by activating p38 MAPK and the hypoxia-inducible transcrip-
tion factor 1 (HIF-1a), promoting the expression of sox9, type-II
collagen, and aggrecan while inhibiting that of Runx2 and pre-
venting hypertrophy [5,21,95,96]. HIF-2a instead has prohy-
pertrophic activities, enhancing the expression of Runx2, type-X
collagen, MMP13, and VEGF [5,21,97-99].

Calcium. Calcium also plays important roles in hypertro-
phy, especially via cytoplasmic accumulation. Extracellular
Ca”" can penetrate either by direct transfer through cell
membrane ion channels [100] or by activating GPCR such as
the calcium-sensing receptor (CaR) expressed in hypertrophic
chondrocytes. Such processes lead to Ca”* release from the
endoplasmic reticulum [101], to the subsequent secretion of
ALP-containing vesicles required for mineralization, and to the
activation of the calcium/calmodulin-dependent protein kinase
(CaMKII) that promotes the upregulation of type-X collagen
expression [102].

Epigenetic factors

Several epigenetic events have been also reported for their
impact on hypertrophy (Table 1). Histone deacetylases
(HDAC:S) prevent the access of DNA to transcription factors
through maintenance of the DNA/histone complex in a highly
packed form. HDAC4, HDACS, and HDAC?7 inhibit the ex-
pression of Runx2, MEF2C, type-X collagen, and MMP13 via
the TGF-f and PTHrP pathways [50,103—-109]. HDAC3 instead
promotes hypertrophy by activating the PI3K/Akt pathway that
impacts Runx2, type-X collagen, and VEGF expression [110].
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microRNAs (miRNAs) also play important roles in the regu-
lation of hypertrophy, such as miR-140 that inactivates p38
MAPK and inhibits MEF2C expression [111], while miR-1 and
miR-365 inhibit HDAC4, consequently enhancing Runx2,
IHH, and type-X collagen expression [112,113]. DNA meth-
ylation also participates in the control of hypertrophy by si-
lencing of the type-X collagen gene at CpG sites [114].

Current Options for Cartilage Repair and
Advances in Stem Cell- and Gene-Based
Approaches: A Focus on Hypertrophy

Spontaneous cartilage repair and current options

Due to its avascular nature, the cartilage has only a lim-
ited capacity for self-regeneration as it has no access to
reparative progenitor cells that normally migrate to sites of
injury to reconstruct a damaged tissue [115-118]. Still,
spontaneous cartilage repair occurs during OA and in focal
defects, depending on the type of injury but with relatively
poor outcomes. OA lesions of up to 3cm? are filled with a
blood clot that forms once the bone marrow spaces are af-
fected by the degradation processes, while larger ones are
irreparable, progressing to even more severe phenotypes
with increases in the incidence of hypertrophy, angiogenesis,
mineralization, and pathological remodeling of the entire
osteochondral unit [115,116]. Chondral defects are invaded
by cells from the synovial membrane, while osteochondral
defects are filled by chondrogenically and osteogenically
competent MSCs present in a blood clot originating from the
bone marrow [115-117]. However, the repair tissues gener-
ated on spontaneous repair in any kind of lesions generally
do not match the structural quality and biomechanical func-
tionality of the original, hyaline cartilage. Only a poorly or-
ganized fibrocartilaginous repair tissue is formed (type-I
collagen instead of type-II collagen and proteoglycans), un-
able to withstand mechanical stress in the joint, and rapidly
degenerating or progressing to OA [115-117].

Various options are available in the clinics to enhance the
repair of OA cartilage and of focal defects. For OA, both
conservative methods (weight reduction, physical therapy),
pharmacological regimens (anti-inflammatory drugs, opioid
analgesics), and surgical options (osteotomy to transfer the
weight load) are used [115,116,119]. Focal defects are
treated depending on their nature [chondral defects: sub-
chondral drilling, microfracturing, or abrasion arthroplasty
to promote the migration of bone marrow-derived MSCs in
the defect area, autologous chondrocyte implantation (ACI);
osteochondral defects: ACI combined with subchondral
bone grafts, implantation of osteochondral cylinders] [115-
117,120,121]. Yet again, none of these procedures fully
reproduces the hyaline cartilage in the treated lesions and
instead, the fibrocartilaginous repair tissue does not integrate
with the adjacent, unaffected cartilage, showing mechanical
resistance, leading to degenerative processes that may cause
generalized OA [115-117].

Stem cell- and gene-based approaches
for cartilage repair

Stem cells for cartilage repair. The use of stem cells to treat
such disorders may provide workable, clinically adapted reg-
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imens to address such issues as these are mostly the cells re-
cruited to improve spontaneous and guided articular cartilage
repair. Stem cells have an ability for proliferation, self-renewal,
and multilineage differentiation potential in a specific envi-
ronment from their niche [122-124], exhibiting homing, tro-
phic, and immunomodulatory properties [125,126].

While embryonic stem (ES) cells and induced pluripotent
stem cells reprogrammed from the patient’s own somatic,
differentiated cells have been reported as a potentially uni-
versal and unlimited source of regenerative cells to form car-
tilage [127—130], their use is still controversial due to ethical
and safety reasons (rejection, teratoma formation, insertional
mutagenesis) [131,132]. Apart from progenitor cells present in
the amniotic fluid [133], umbilical cord blood [134], and pla-
centa [135], adult MSCs remain the most used source of
chondroreparative cells as they can be readily isolated from a
wide range of tissues, including the bone marrow itself, the
adipose tissue, synovium, perichondrium/periosteum, trabec-
ular bone, skeletal muscle, and even peripheral blood [136—
140]. MSCs have been defined by the Mesenchymal and Tissue
Stem Cell Committee of the International Society for Cellular
Therapy as follows:

1. being plastic-adherence upon maintenance in standard
culture conditions,

2. expressing the surface markers CD105, CD73, and
CD90 while lacking expression of CD45, CD34,
CD14, CD79a, and HLA-DR, and

3. having the ability to differentiate into mesodermal
lineage cells (chondrocytes, osteoblasts, adipocytes)
under standard conditions [141].

MSCs have been already applied to treat patients with
cartilage disorders, including for the management of OA
[142-145] and to heal focal defects [146-151] by in-
traarticular injection or via surgical arthrotomy. Still, full
restoration of the hyaline cartilage has not been afforded
thus far with any of these techniques, showing the necessity
of improving the current options of cartilage repair.

Principles of gene therapy for cartilage repair. To date,
more than 2,200 phase two to three gene therapy trials have
been reported to successfully treat various human diseases
while the European Medicines Agency’s Committee for
Medicinal Products for Human Use recently approved the
marketing of Glybera, a recombinant adeno-associated virus
(rAAV) vector overexpressing lipoprotein lipase (LPL) for
the clinical treatment of LPL deficiency [152]. Gene therapy
is thus a potential tool to enhance the processes of cartilage
repair by delivering chondroreparative genes in sites of ir-
reversible, progressive cartilage injury to achieve prolonged
expression of candidate factors that otherwise display very
short pharmacological half-lives (some minutes) by rapid
clearance from the host [117,153,154].

Different gene transfer vectors have been applied in the
field of cartilage research in light of the specific advantages
of each type of delivery system, including nonviral systems
(electroporation, liposomes, nanoparticles) [155-173] and
vectors derived from viruses based on natural entry path-
ways in cell targets, including adenoviruses [162,174—194],
retro-/lentiviruses [157,195-210], and AAV [211-238].

While considered safe as they avoid the risk of acquiring
replication competence, nonviral vectors usually result in
low and short-term gene transfer efficiencies of transgene
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expression, making them more suited for indirect, ex vivo
approaches based on the implantation of genetically modi-
fied cells [155-173].

Viral vectors have specific features and advantages, but
also particular limitations for cartilage therapy. Even though
the cartilage is considered as a tissue relatively protected
from immunity, adenoviral vectors may retain the capacity of
inducing host immune responses. Furthermore, while very
effective early on, allowing for direct in vivo approaches,
adenoviral vectors have a relatively limited duration of
action by dilution of viral episomal forms in the targets
[162,174-194]. Expression from retro-/lentiviral vectors
may be achieved for much longer periods of time by inte-
gration in the host genome, but they are less efficient (there-
fore rather applied in indirect, ex vivo strategies) [157,195—
210] and exhibit a risk for insertional mutagenesis, an issue in
translational cartilage research as most of the disorders af-
fecting this tissue are not life-threatening. Highly effective,
small rAAYV vectors (~20nm) [211-238] can be also used in
direct in vivo settings through the dense extracellular matrix
present in most of tissues. They are much less immunogenic
than adenoviral vectors due to the complete removal of AAV
sequences in the recombinant genome and are mostly kept as
stable episomes that allow for sustained transgene expression.
The limited packaging capacity of rAAV (~4.6kb) and
the rate-limiting step of rAAV genome conversion from
single- to double-stranded DNA have been, respectively,
addressed, at least, in part, by generating splicing vectors
[239,240] and using self-complementary AAV (scAAV)
that bypass the requirement for DNA synthesis in the target
cell [241]. Active work is ongoing to circumvent natural
humoral immune responses raised in the host against AAV
capsid proteins [242-244] by providing the vectors via con-
trolled delivery systems that may mask the viral epitopes and
allow for a temporal and spatial presentation of the vectors
[214,228, 245-250]. Yet, although first considered safer than
the integrative retro-/lentiviral vectors, rAAV have recently
raised concerns regarding their possible potential for onco-

cell culture
(monolayer and aggregate cultures)

- -]

in vitro

gene vector
(nonviral, viral)

/
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genic insertional mutagenesis leading to hepatocellular car-
cinoma [251,252]. While still controversial as many studies
did not document such genotoxicity in vivo [253], the design
of new, engineered rAAV vectors could improve the safety of
human gene therapy protocols [254].

Gene- and stem cell-based therapy for cartilage repair: a focus
on hypertrophy. A number of studies have provided evidence
of the benefits of gene- and stem cell-based approaches to
delay or prevent hypertrophy for the goal of articular carti-
lage repair (Fig. 4). The families of factors overexpressed to
achieve these goals include adhesion molecules, ECM com-
ponents, growth and transcription factors, signaling molecules,
and epigenetic factors as single or combined treatments
(Table 2). The strategies developed were mostly tested in
vitro using various sources of stem cells (MSCs from the
bone marrow, synovium, and adipose tissue), but also in
in vivo, relevant translational models based on a wide
range of gene transfer systems, including nonviral and
viral (adenoviral, retro-/lentiviral, rAAV) vectors.

Inhibition of hypertrophy and osteogenic differentiation by
reduction of the expression of typical markers (type-X colla-
gen, MMP13, Runx2, ALP, OCN, OP) has been documented
in vitro in various types of MSCs, including those derived
from the bone marrow as isolated cells or whole cell aspirates,
synovium, and adipose tissue. Isolated bone marrow-derived
MSCs (human, rat, mouse) have been modified to delay or
prevent such processes [201,223,225, 229,255-269] by de-
livering the following:

1. N-Cad [265], COMP [259],

2. FGF-2 [229],

3. SOX9 [223,225], distal-less homeobox 5 (DLXS5)
[268], Twist [270], yes-associated protein 1 (YAP1)
[262], HIF-1a [258],

4. Wnt3a, lipoprotein-related protein 5 (LRP5) [269],
zinc transporter 7 (Znt7) [263],

5. small interfering RNA (siRNA) against the zinc-finger
protein 145 (ZNF145) [201], short-hairpin RNA (shRNA)

tissue explants

FIG. 4. Therapeutic gene-
and stem cell-based options to
treat articular cartilage disor-
ders. Approaches focusing on
hypertrophy in experimental
cartilage research have been
performed both in cell culture
in vitro, in explant tissue cul-
tures in situ, and in vivo by

g either indirect transplantation

L) ex vivo isolated cells of cells genetically modified ex

e N vivo on isolation (and possible

expansion) or direct injection

/ B\ of the gene vector. CD, chon-

implantation ex vivo in vivo X dral defect; OA, osteoarthritis;
(CD,0C0) ' OCD, osteochondral defect.

[ u
implantation injection
(subcutaneous) (CD, OCD, OA)
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TABLE 2. GENE- AND STEM CELL-BASED APPROACHES TO PREVENT HYPERTROPHY FOR CARTILAGE REPAIR

Family Gene Vector System References
Adhesion N-Cad LV Inhibition of osteogenesis (rat BM-MSCs) [265]
molecules
ECM COMP NV Inhibition of osteogenesis (rat BM-MSCs) [259]
components
Growth factors TGF-, FGF-2, IGF-1 rAAV Inhibition of hypertrophy (human BM, [221,229,238]
human BM-MSCs, rabbit OCD)
Chml scAAV  Inhibition of hypertrophy (pig CD) [230]
Transcription ~ SOX9 rAAV Inhibition of hypertrophy (human BM-MSCs, [213,217,
factors human BM, pig BM, rabbit OCD) 223,225]
DLX5, Twist, YAP1 RV/LV  Inhibition of osteogenesis (human and [262,268,270]
mouse BM-MSCs)
HIF-1a AdV Inhibition of osteogenesis (human BM-MSCs) [258]
Signaling Wnt3a, LRPS, Znt7 NV Inhibition of osteogenesis (human and [263,269]
molecules rat BM-MSCs)
OCRLI1 LV Inhibition of hypertrophy (mouse OA) [272]
Epigenetic HDAC4 AdV Inhibition of hypertrophy (pig SD-MSCs) [183]
factors siRNA (ZNF145) LV Inhibition of hypertrophy (human BM-MSCs) [201]
shRNA (SIRT6) LV Inhibition of osteogenesis (rat BM-MSCs) [260]
miR-23a, miR-30, miR-31, NV Inhibition of osteogenesis (human and rat [255-257,261,
miR-34a, miR-100, BM-MSCs, human AD-MSCs) 264,266,267,271]
miR-138, miR-150-3p,
miR-320a
Combined FGF-2/IGF-1 AdV Inhibition of hypertrophy (sheep AD-MSCs) [175]
approaches  TGF-B/SOX9 rAAV  Inhibition of hypertrophy (human BM-MSCs) [212]
SOX trio NV Inhibition of hypertrophy (human BM-MSCs) [165]
TGF-B/siRNA (Coll) LV/AdV Inhibition of osteogenesis (SD-MSCs) [177]
SOX9/siRNA (Runx2) NV Inhibition of osteogenesis (human BM-MSCs) [169]

AD, adipose-derived; AdV, adenoviral vector; BM, bone marrow; CD, chondral defect; Chm1, chondromodulin 1; COMP, cartilage oligomeric
matrix protein; DLXS, distal-less homeobox 5; FGF-2, basic fibroblast growth factor; IGF-I, insulin-like growth factor I; LRPS5, lipoprotein-
related protein 5; LV, lentiviral vector; MSCs, mesenchymal stem cells; N-Cad, N-cadherin; NV, nonviral vector; OA, osteoarthritis; OCD,
osteochondral defect; OCRLI1, oculocerebrorenal syndrome of Lowe protein 1; rAAV, recombinant adeno-associated viral vector; RV, retroviral
vector; SCAAV, self-complementary AAV; SD, synovium-derived; shRNA, short-hairpin RNA; siRNA, small interfering RNA; SIRT6, sirtuin 6;
SOX trio, SOX5/SOX6/SOX9; YAP-1, yes-associated protein 1; ZNF145, zinc-finger protein 145; Znt7, zinc transporter 7.

against sirtuin 6 (SIRT6) [260], various miRNAs (miR-
23a, -30, -31, -34a, -138, -150-3p, -320a) targeting
Runx2, B-catenin, Jagged one (JAGI, a ligand for Notch
1, an osteogenic inducer in progenitor cells), the BMP-
inducible gene homeobox al0 (HOXA10, a critical reg-
ulator of osteogenesis), LRP5, and focal adhesion kinase
(FAK, a kinase playing a central role in promoting 0s-
teoblast differentiation) [255-257,261,264,266,267], and
6. combinations of TGF-/SOX9 [212], SOX trio (SOX5/
SOX6/SOX9) [165], SOX9/siRNA against Runx2 [169].

Such approaches have been performed with nonviral
[165,169,255-257,259,261,263,264,266,267,269], adenoviral
[258], retro-/lentiviral [201,260,262,265,268,270], and rAAV
vectors [212,223,225,229]. Whole bone marrow aspirates
(human, pig) have been also manipulated for the same purposes
[213,217,238] by gene transfer of TGF-f [238] and SOX9
[213,217] via rAAV vectors [213,217,238]. Genetic manipu-
lation of MSCs from the synovium (pig) [177,183] has been
also successfully attempted to modulate hypertrophy and os-
teogenesis to overexpress HDAC4 [183] and a combination of
TGF-B/siRNA against Coll [177] via lentiviral [177] and ad-
enoviral vectors [177,183]. Also, such processes have been
reduced in MSCs from the adipose tissue (human, sheep)
[175,271] on application of sequences coding for miR-100
targeting the BMPR2 [271] and by combined FGF-2/IGF-I
delivery [175] via nonviral [271] and adenoviral vectors [175].

In vivo, delayed hypertrophic and osteogenic differentia-
tion has also been reported in clinically relevant models of
cartilage lesions, including experimental OA [272] and focal
(chondral and osteochondral) cartilage lesions [221,223,
230]. Inhibition of hypertrophy in an experimental model of
OA induced by anterior cruciate ligament transaction (ACLT)
in mice has been specifically reported by delivery of the ocu-
locerebrorenal syndrome of Lowe protein 1 (OCRLI, a Rac
GTPase-activating protein) via lentiviral vector-mediated
gene transfer [272], leading to a reduction in the expression
of type-X collagen and MMP13 in the treated knee joints
versus control knees. Delayed hypertrophic differentiation
has been also observed in experimental focal lesions created in
rabbits (osteochondral defects) [221,223] and pigs (chondral
defects) [230] on administration of genes for IGF-I [221],
chondromodulin 1 (Chml, an inhibitor of angiogenesis) [230],
and SOX9 [223] via classical rAAV vectors [221,223] or using
scAAV constructs [230], mediating decreases in type-X col-
lagen, MMP13, type-I collagen, Runx2, and j-catenin.

Conclusions

In this review, we summarized the current knowledge on
hypertrophic alterations in cartilage injuries and provided
evidence of the complexity and variety of mechanisms gov-
erning such events. Even though a number of studies reported
the benefits of gene- and stem cell-based approaches to delay



CARTILAGE HYPERTROPHIC THERAPY

hypertrophy for the goal of articular cartilage repair, full
inhibition of this process remains to be clearly demonstrated
in light of the many, interconnecting pathways implicated.
Indeed, many crosstalks between each independent pathway
have been described [38], including FGF-IHH/PTHrP-BMP
[63], PTHrP-IGF-B-catenin [70], and FGF-TGF-B-Wnt inter-
actions [273] that likely need to be further investigated as a
possible way to adequately restrain cartilage hypertrophy.
Thus, generating more detailed information on and evaluations
of the developmental processes and pathomechanisms in-
volved in the development and progression of cartilage disor-
ders (OA, focal defects) are undoubtedly critical to define new
targets for improved therapies of articular cartilage lesions.
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